Current Semester

Graduate Courses

Fall 2021

Atmospheric Radiative Transfer
Structure and composition of terrestrial atmospheres. Fundamental aspects of electromagnetic radiation. Absorption and emission by atmospheric gases. Optical extinction of particles. Roles of atmospheric species in Earth's radiative energy balance. Perturbation of climate due to natural and antropogenic causes. Satellite observations of climate system.
Instructors: Yi Ming, Venkatachalam Ramaswamy
Deep Learning in Geophysical Fluid Dynamics
Course provides a survey of the rapidly growing field of physics-informed deep learning, which integrates known physics principles with neural networks to predict the behavior of a physical system. It both introduces the background knowledge required to implement physics-informed deep learning and provides practical in-class coding exercises. Students gain experience applying this emerging method to their own research interests, including topics in geophysical fluid dynamics (atmospheric, oceanic or ice dynamics) or other nonlinear systems where the same technique applies. Students develop individual projects throughout the semester.
Instructors: Ching-Yao Lai
Introduction to Geophysical Fluid Dynamics
This course covers the physical principles and mathematical tools fundamental to the theoretical, observational, experimental, and numerical study of the atmosphere and oceans. Topics include: kinematical, dynamical, and thermodynamical equations for rotating and stratified fluids; hydrostatic and geostrophic balance; Boussinesq approximation; energetic balances; transport of scalar fields by advection and diffusion; vorticity and potential vorticity; shallow water theory; quasi-geostrophic theory.
Instructors: Stephen Matthew Griffies
Current Topics in Dynamic Meteorology: Large-Scale Structure /Atmosphere
Dynamical concepts needed to develop a qualitative understanding of the large-scale structure of the atmospheric circulation. The control of the angular momentum budget by Rossby wave fluxes. Theories for the Hadley circulation in the tropics and the "macro-turbulence" of midlatitudes. Linear theories for deviations from zonal symmetry of the mean flow.
Instructors: Stephen T. Garner