Courses

The Program offers a wide variety of courses in Atmospheric and Oceanic Sciences.  These courses are designed to help students understand the fundamentals and to expose them to the advanced research topics in the field.  In addition, students have opportunities to take courses offered by other departments and programs (e.g., Applied and Computational Mathematics, Physics, Ecology and Evolutionary Biology). 

Click here to view the list of current semester courses for AOS.  For detailed information on the environment related courses offered by Princeton University, please visit Geosciences and PEI.


GEO 361/ENV 361/CEE 360/AOS 561 (Fall Semester) (Fueglistaler)

Earth's Atmosphere

This course discusses the processes that control Earth's climate - and as such the habitability of Earth - with a focus on the atmosphere and the global hydrological cycle. The course balances overview lectures (also covering topics that have high media coverage like the 'Ozone hole' and 'Global warming', and the impact of volcanoes on climate) with selected in-depth analyses. The lectures are complemented with homework based on real data, demonstrating basic data analysis techniques employed in climate sciences.


GEO 425/MAE 425 (Fall Semester) (Vecchi)

Introduction to Physical Oceanography

The study of the oceans as a major influence on the atmosphere and the world environment. The theoretical and observational bases of our understanding of ocean circulation and the oceans' properties. The Coriolis-dominated equations of motion, atmospheric and upper oceanic Ekman layers, the thermocline, wind-driven and thermohaline-driven circulation, oceanic tracers, waves, and tides.


GEO 427

Fundamentals of the Earth's Climate System

The goal of the course is to provide students with an introductory overview of the broad factors that determine our current climate, as well as past and future climates. We first build a foundation for understanding the principal features of today's climate. This includes examining the Earth's energy and water cycles, the processes determining the principal atmospheric and ocean circulation features, climate feedback processes, and dominant modes of variability. We then use this framework to interpret observational records of past climates, including ice age cycles, and to examine projections of future climate change.


GEO 503/AOS 503 (Must be taken by the end of your second year)

Responsible Conduct of Research in Geosciences (Half-Term)
 
Course educates Geosciences and AOS students in the responsible conduct of research using case studies appropriate to these disciplines. This discussion-based course focuses on issues related to the use of scientific data, publication practices and responsible authorship, peer review, research misconduct, conflicts of interest, the role of mentors & mentees, issues encountered in collaborative research and the role of scientists in society. Successful completion is based on attendance, reading, and active participation in class discussions. Course satisfies University requirement for RCR training.

GEO 521/AOS 521 (Spring Semester) (Sigman)

Southern Ocean Seminar

The Southern Ocean is central to many questions regarding global climate and environmental conditions.  The course reviews and evaluates the field's current understanding of the Southern Ocean:  its modern processes, physical, chemical, and biological; its geologic origins; its evolution through geologic time and over orbital cycles; and predictions for its future.  The course is composed of introductory lectures, topical presentations by members of Princeton University's academic community, and student-led presentations that draw from recent and ongoing research.


AOS 527 (Fall Semester) (Ramaswamy)

Atmospheric Radiative Transfer

The structure and composition of terrestrial atmospheres. The fundamental aspects of electromagnetic radiation, absorption and emission by atmospheric gases, optical extinction by particles, the roles of atmospheric species in the Earth's radiative energy balance, the perturbation of climate due to natural and anthropogenic causes, and satellite observations of climate systems are also studied.


AOS 537/GEO 537 (Spring Semester - alternate years, next taught in 2025) (Horowitz)

Atmospheric Chemistry

Natural gas phase and heterogeneous chemistry in the troposphere and stratosphere, with a focus on elementary chemical kinetics; photolysis processes; oxygen, hydrogen, and nitrogen chemistry; transport of atmospheric trace species; tropospheric hydrocarbon chemistry and stratospheric halogen chemistry; stratospheric ozone destruction; local and regional air pollution, and chemistry-climate interactions are studied.


AOS 547 (Spring Semester - alternate years, next taught in spring 2025) (Donner)

Atmospheric Thermodynamics and Convection

The thermodynamics of water-air systems. The course gives an overview of atmospheric energy sources and sinks. Planetary boundary layers, closure theories for atmospheric turbulence, cumulus convection, interactions between cumulus convection and large-scale atmospheric flows, cloud-convection-radiation interactions and their role in the climate system, and parameterization of boundary layers and convection in atmospheric general circulation models are also studied.


AOS 571 (Fall Semester) (Griffies) (GFD I)

Introduction to Geophysical Fluid Dynamics

This course covers the physical principles and mathematical tools fundamental to the theoretical, observational, experimental, and numerical study of the atmosphere and oceans. Topics include: kinematical, dynamical, and thermodynamical equations for rotating and stratified fluids; hydrostatic and geostrophic balance; Boussinesq approximation; energetic balances; transport of scalar fields by advection and diffusion; vorticity and potential vorticity; shallow water theory; quasi-geostrophic theory.


AOS 572 (Spring Semester) (Griffies) (GFD II)

Atmospheric and Oceanic Wave Dynamics

Observational evidence of atmospheric and oceanic waves; laboratory simulation. Surface and internal gravity waves; dispersion characteristics; kinetic energy spectrum; critical layer; forced resonance; and instabilities. Planetary waves: scale analysis; physical description of planetary wave propagation; reflections; normal modes in a closed basin. Large-scale baroclinic and barotropic instabilities, Eady and Charney models for baroclinic instability, and energy transfer.


AOS 573 (Spring Semester - alternate years, next taught in spring 2024) (Zhang)

Physical Oceanography

Response of the ocean to transient and steady winds and buoyancy forcing. A hierarchy of models from simple analytical to realistic numerical models is used to study the role of the waves, convection, instabilities, and other physical processes in the circulation of the oceans.


AOS 575 (Fall Semester - alternate years, next taught in Fall 2024 (Hallberg)

Numerical Prediction of the Atmosphere and Ocean

A practical introduction to the numerical approaches that are used to simulate the evolution of the ocean and atmosphere and the coupled Earth system. This course covers the forms of the equations of motion that are most appropriate for numerically studying various atmospheric and oceanic phenomena, and the numerical techniques that are used for their spatial and temporal discretization. The conservation properties of the continuous equations of motion and the numerical approaches for reproducing them are covered, as are the parameterization of unresolved phenomena, and specific considerations for accurate simulation of tracers.


AOS 576 (Fall Semester - alternate years, next taught in Fall 2023) (Garner)

Current Topics in Dynamic Meteorology

An introduction to topics of current interest in the dynamics of large-scale atmospheric flow. Possible topics include wave-mean flow interaction and nonacceleration theorems, critical levels, quasigeostrophic instabilities, topographically and thermally forced stationary waves, theories for stratospheric sudden warmings and the quasi-biennial oscillation of the equatorial stratosphere, and quasi-geostrophic turbulence.


AOS 578/GEO 578 (Spring Semester - alternate years, next taught in Spring 2024) (Resplandy)

Ocean Dynamics and Ecosystems 

Marine ecosystems are tightly controlled by ocean circulation and rapidly changing in response to climate change. This course discusses the processes that shape and structure ocean ecosystems, with a focus on ocean turbulence and fine-scale dynamics, and climate. The course balances overview lectures, discussion of the current and classic literature on the topic, and data analysis using observations and ocean/climate model outputs. Students will participate in seminar type presentations and discussions, and work in group to present a final project based on observational data and/or ocean modeling. 

AOS 580 (AOS Faculty)

Graduate Seminar in Atmospheric and Oceanic Sciences

Atmospheric composition and thermodynamics including effects of water. Simple radiative transfer, elementary circulation models, phenomenological description of atmospheric motions, structure of the troposphere, stratosphere, mesosphere, and thermosphere, chemistry of ozone, and comparison with atmospheres on other planets.


CEE 588/GEO 588/AOS 588 - (Spring semester - alternate years, next taught in 2024) (Bou-Zeid)

Boundary Layer Meteorology

Basic dynamics of the Atmospheric Boundary Layer (ABL) and how it interacts with other environmental and geophysical flows. Topics covered include: mean, turbulence, & higher order flow equations; similarity theories; surface exchanges and their impact on the stability of the atmosphere; different ABL flow regimes (convective, neutral, and stable); role of the ABL in the hydrologic cycle; the fundamentals of scalar (pollutant, water vapor, etc) transport; modeling and measurement approaches for the ABL; and the role of the ABL in large-scale atmospheric flows and how it is represented in coarse atmospheric models.


CEE 593/AOS 593 (Fall Semester) (Zondlo)

Aerosol Observations and Modeling

This course focuses on ground-based and satellite observations of aerosol particles and their impacts on climate through modeling studies. Course material includes satellite and ground-based measurements of aerosol particles, mathematical formulation of transport, and numerical models of aerosol distribution. It studies how aerosols impact climate change through direct and indirect effects including cloud-aerosol interactions. Offered every year, in the fall.