[Virtual] GFDL Formal Seminar

Thu, Oct 22, 2020, 2:00 pm to 3:00 pm

Much of climate science is viewed as a signal-to-noise problem and the field has many statistical methods for extracting the signal of interest. Here, we argue that artificial neural networks (ANNs) are an additional useful tool for the “climate toolbox”. As an example, we demonstrate their utility for extracting forced climate patterns from model simulations and observations whereby the ANN identifies patterns that are complex, non-linear combinations of signal and noise. While neural networks are often viewed as black boxes, we further demonstrate how to visualize what the network has learned using recent advances in visualization tools within the computer science community. This approach suggests that viewing climate patterns through an AI lens has the power to uncover new insights into climate variability and change.


[Virual] David Bradford Energy and Environmental Policy Seminar

Mon, Nov 30, 2020, 12:15 pm to 1:15 pm
Location: Zoom

[Virtual] HMEI Faculty Seminar (formerly PEI)

Tue, Dec 1, 2020, 12:30 pm to 1:30 pm
Location: Zoom

[Virtual] Andlinger Highlight Seminar Series

Thu, Dec 3, 2020, 12:30 pm to 1:30 pm
Location: Virtual